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1. Introduction

Chatter in machining processes like turning, milling and drilling is not induced by external periodic

forces, but by instability in the cutting force [1, 2]. The disturbance caused by a wavy work surface on the

tool motion influences the cutting tool dynamics and leads to tool vibration. This tool vibration generates

new waviness on the work surface and leads to increased tool vibration with higher amplitudes. This

regenerative vibration (positive feedback) leads to instability in the machining process and creates chatter.

In 1907, Taylor [? ] found that the steady-state cutting force depends on the chip width w, tool feed velocity

v, and the chip thickness f . Taylor formulated a simple nonlinear model for cutting force F :

F = Kwfn, (1)

where K is the cutting coefficient in the feed direction and n is a constant that depends on the material [3].
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Figure 1: Schematic of single-degree-of-freedom orthogonal turning. The tool post moves with a constant velocity v and its

position is represented by x̃. The tool tip position at current time is at x(t) and its position before one revolution was at x(tτ).

Figure ?? shows a schematic of a single-degree-of-freedom (SDoF) model of orthogonal turning. It is

assumed that the work-piece is revolving at a rate of against a flexible tool. The tool has a mass of m,

damping coefficient c, stiffness k, and an un-sprung length of l. The tool is mounted on a tool post which

moves at a feed velocity of v with respect to an inertial frame. The variable x(t) is the position of the tool



tip measured from the inertial frame at time t, and x(tτ) is the tool position at a previous time (tτ). Here, τ

is the time for one revolution of the work-piece. We write the mathematical description of the SDoF turning

model as follows:

mẍ(t) = −c(ẋ(t) − v) − k(x(t) − vt− l) − ∆F, (2)

where ∆F is the cutting force, which can be obtained from Eq. 1:

∆F = Kw(x(t) − x(t− τ))n. (3)

Here, (x(t) − x(t− τ)) is the dynamic chip thickness due to tool vibration. In this section, we are deriving

a governing equation for SDoF orthogonal turning. We now introduce the following transformation:

x(t) − ξ(t) + vt+ C. (4)

Here, ξ(t) represents a small perturbation around the static equilibrium, and C is a constant. Upon substi-

tuting Eq. 4 and Eq. 3 into Eq. 2 and rearranging, we obtain the following second-order DDE representing

the dynamics of the perturbation ξ:

mẍi+ cξ̇ + kξ = −k(C − l) −Kw(ξ(t) − ξ(t− τ + vτ))n. (5)

Expanding (ξ(t)ξ(tτ) + vτ)n using a Taylor series, neglecting the higher-order terms, and selecting C =

(Kw(vτ)n + kl)/k in Eq. 5, we arrive at the following equation [4]:

mξ̈ + cξ̇ + kξ = −Kw(vτ)n−1(ξ(t) − ξ(t− τ)). (6)

Now, we substitute c = 2mωnξ into Eq. 6, where ωn = pk/m is the natural frequency of the cutting tool:

ξ̈ + 2ζωnξ̇ + ω2
nξ = −ω̃(ξ(t) − ξ(t− τ)). (7)

Here, ω̃ = Kw(vτ)n−1/(mω2
n) is the normalized depth of the cut.

To improve the stability (chatter margin) of the turning process, Segalman and Butcher [5] proposed

an impedance modulation approach. In this approach, the mechanical stiffness k of the tool is made time

periodic by adding an oscillatory stiffness km cos(γt). By defining α = km/k and = γ/γn, the non-

dimensional equation governing the dynamics of the tool can be written as:

ξ̈ + 2ζωnξ̇ + ω2
n(1 + α cos(kt))ξ = −ω̃(ξ(t) − ξ(t− τ)). (8)

Equation 8 is a DDE with a time-periodic coefficient. Another approach that is commonly employed to

improve the stability of turning is to introduce a time-periodic delay and is achieved by spindle-speed

modulation [? ]. Here, a cosine-type spindle speed modulation is used, and is represented by Ω(t) =

Ω0 + Ω1 cos(ωmt) where Ω0 is the mean spindle speed. Ω1 is the amplitude of the spindle speed, and ωm is

the angular modulation frequency. When Ω1 < 0.2Ω0, then the time delay [6] can be expressed as follows:

τ(t) = τ0 − τ1 cos(ωmt). (9)
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The dynamical model of such a turning process with varying spindle speed is shown below [6]:

ξ̈(t) + 2ζξ̇(t) + ξ(t) = −ω̃(ξ(t) − ξ(t− τ(t))), (10)

where ω̃ = Kw/(mω2
n) is the normalized depth of the cut. Equation10 is a DDE with time-periodic delay.

By considering the distributed force between the tool and the workpiece, a more general model for turning

was proposed by Khasawneh et al. [7]. The governing equation in this model takes the following form:

ξ̈ + 2ζξ̇(t) + ω2
nξ(t) = −ω̃

∫ ts

0

(ξ(t− t̂) − ξ(t− τ(t) − t̂))w(t̂)dt̂, (11)

where ts is the chip contact time on the tool. In Eq. 11, w(t̂) is the kernel function and contains the

information of the force distribution on the tool. When w(t̂) = δ(t̂) we recover Eq.7.

From this, we can see that depending on the physical process and modeling choice, the turning problem

can be represented as a DDE with constant coefficients and delays (Eq.7), with time-periodic coefficients

and constant delays (Eq.8), or with constant coefficients and time-periodic delays (Eq. 10), or with constant

coefficients and distributed delays (Eq. 11).

2. Result

To study the stability, the following governing equation of motion for turning with 1 DoF is considered:

ẍ+ 2ξωẋ+ ω2x(t) = −ωh(t)

m
(x(t) − x(t− τ)) (12)

Upon solving the above equation using semi-desensitization method the following stability chart is obtained.

In the Fig. 2 the black line shows the stability boundary below which the system will be stable and unstable

Figure 2: Schematic of single-degree-of-freedom orthogonal turning. The tool post moves with a constant velocity v and its

position is represented by x̃. The tool tip position at current time is at x(t) and its position before one revolution was at x(tτ).

in the above portion.
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3. Conclusion

Turning is one of the machining process and disturbance caused by a wavy work surface on the tool motion

influences the cutting tool dynamics and leads to tool vibration. In this work the governing equations of

motion for turning are derived and represented in the form of a delay differential equations. Then the DDEs

are solved using semi-desensitization technique and the corresponding stability chart is reported.
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